Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Investigations on benz[1,2]oxaphosphinane derivatives

Magdalena Małecka ${ }^{\text {a* }}$ and Elżbieta Budzisz ${ }^{\text {b }}$
${ }^{\text {a D Department of Crystallography, University of Łódź, Pomorska 149/153, PL-90236 }}$ Łódź, Poland, and ${ }^{\mathbf{b}}$ Institute of Chemistry, Faculty of Pharmacy, Medical University, Muszyńskiego 1, PL-90151 Łódź, Poland
Correspondence e-mail: malecka@krysia.uni.lodz.pl

Received 30 March 2001
Accepted 20 April 2001
The structures of two compounds, 3-[1-(2-hydroxyethylamino) ethylidene]-2-methoxy-3,4-dihydro-1,2 λ^{5}-benzoxa-phosphinane-2,4-dione, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{P}$, and 3-[1-(2-hydroxy-ethylamino)ethylidene]-2-methoxy-6-methyl-3,4-dihydro$1,2 \lambda^{5}$-benzoxaphosphinane-2,4-dione, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{P}$, have been studied and compared. The oxophosphinane rings have a halfchair conformation and extra six- and five-membered rings are formed by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. An intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is also observed.

Comment

Aminophosphonic acids are synthetic analogues of natural amino acids, in which the carboxylic acid group is replaced by a phosphonic acid group. Aminophosphonic acids, their esters and their salts have attracted significant attention owing to their synthetic and biological value both as agrochemical (herbicides, pesticides and growth regulators in plants) and medical (antibiotics, antivirals and enzyme inhibitors) products with broad applications (Kalir \& Kalir, 1996; Hudson \& Pianka, 1996; Kukhar \& Hudson, 1999).

In our previous work, we described the reaction of 2-methyl-4-oxo-4H-chromen-3-ylphosphonate, ($\mathrm{I} a$), and 2,6-dimethyl-4-oxo-4H-chromen-3-ylphosphonate, (II a), with 2-hydroxyethylamine (Budzisz et al., 2001). From this reaction, we obtained cyclic 2 -aminophosphonic analogues of the chromone general structure, namely 3-[1-(2-hydroxyethylamino) ethylidene]-2-methoxy-3,4-dihydro-1, $2 \lambda^{5}$-benzoxa-phosphinane-2,4-dione, (I), and 3-[1-(2-hydroxyethyl-amino)ethylidene]-2-methoxy-6-methyl-3,4-dihydro-1,2 λ^{5} -benzoxaphosphinane-2,4-dione, (II) (Budzisz \& Pastuszko, 1999; Budzisz et al., 2001). The compounds obtained exhibited alkylation properties in an in vitro test with 4-(4-nitrobenzyl)pyridine (NBP) (Preussman et al., 1969).

In a series of IR spectra determined in chloroform, the derivatives of benzo[1,2]oxaphosphinane in various concentrations ($1-100 \mathrm{mmol}$) confirm the presence of a strong intramolecular hydrogen bond exhibiting a broad band at $v=3430-3450 \mathrm{~cm}^{-1}$.

The X-ray structural investigation of two derivatives of benz[1,2]oxaphosphinane has been carried out in a continuation of our studies (Budzisz et al., 2001). The title structures, (I) and (II), consist of a benzene ring fused with an oxaphosphinane ring. The hydroxyethylaminoethylidene group is attached at position 3 in both molecules. In (II), the benzene ring is substituted by a methyl group at position 6 .

The oxaphosphinane rings have half-chair conformations. The puckering parameters (Cremer \& Pople, 1975) are $Q_{T}=$ 0.383 (3) $\AA, \varphi_{2}=32.1(8)^{\circ}$ and $\theta_{2}=67.1(7)^{\circ}$ in (I), and $Q_{T}=$ 0.360 (2) $\AA, \varphi_{2}=38.7(5)^{\circ}$ and $\theta_{2}=65.8$ (7) ${ }^{\circ}$ in (II), corresponding to the $\mathrm{O} 1-\mathrm{P} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9$ atom sequence, with a twofold pseudo-axis passing through the midpoints of the $\mathrm{P} 2-\mathrm{O} 1$ and $\mathrm{C} 4-\mathrm{C} 10$ bonds; asymmetry parameters (Nardelli, 1983) $\Delta_{2}=0.009$ (2) for (I) and $\Delta_{2}=0.025$ (1) for (II).

Two intramolecular hydrogen bonds, N32-H32 . O O 4 and N32-H32‥O35, are observed in both molecules which close

Figure 1
A perspective view of (I) showing hydrogen bonding to an adjacent molecule and the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Symmetry codes are as given in Table 2.
the extra six- and five-membered rings, respectively. The sixmembered rings are planar, whereas the conformation of the five-membered ring is a C34-deformed envelope in (I) and an N32-twist in (II) [asymmetry parameters (Nardelli, 1983): $\Delta_{s}=$ 0.04 (1) for (I) and $\Delta_{2}=0.05$ (1) for (II)]. The puckering parameters (Cremer \& Pople, 1975) are $q_{2}=0.42$ (1) \AA and $\varphi_{2}=-137(5)^{\circ}$ in (I), and $q_{2}=0.49(1) \AA$ and $\varphi_{2}=-130(3)^{\circ}$ in (II), corresponding to the $\mathrm{C} 33-\mathrm{C} 34-\mathrm{O} 35-\mathrm{H} 32-\mathrm{N} 32$ sequence.

The P atom has tetrahedral geometry slightly distorted towards trigonal pyramidal, with an elongated $\mathrm{C} 3-\mathrm{P} 2$ apical bond.

Bond distances and angles in both molecules are in good agreement with expected values (Allen et al., 1987). The ORTEX (McArdle, 1995) drawings of molecules (I) and (II) with the atomic numbering scheme are given in Figs. 1 and 2, respectively.

Figure 2
A perspective view of (II) showing hydrogen bonding to an adjacent molecule and the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Symmetry codes are as given in Table 4.

Experimental

To a solution of 2-methyl-4-oxo-4 H -chromen-3-ylphosphonate [for the preparation of (I)] or 2,6-dimethyl-4-oxo-4 H -chromen-3-ylphosphonate [for the preparation of (II)] in methanol was added a solution of ethanolamine in methanol. The mixture was left overnight at room temperature. The solvent was removed in vacuo and the crude products of (I) and (II) were purified by crystallization. Colourless crystals were obtained by slow evaporation from
methanol at room temperature (Budzisz \& Pastuszko, 1999; Budzisz et al., 2001). The reaction was carried out at room temperature in anhydrous methanol.

Compound (I)

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{P}$
$M_{r}=297.24$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=9.325$ (1) \AA
$b=9.662$ (1) \AA
$c=15.619$ (2) \AA
$V=1407.4(1) \AA^{3}$
$Z=4$
$D_{x}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=26.9-30.5^{\circ}$
$\mu=1.92 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.2 \times 0.1 \times 0.1 \mathrm{~mm}$

Data collection

Rigaku AFC-5S diffractometer

$$
\omega \text { scans }
$$

Absorption correction: analytical (de Meulenar \& Tompa, 1965) $T_{\text {min }}=0.712, T_{\text {max }}=0.841$
8498 measured reflections
1429 independent reflections (plus 973 Friedel-related reflections)
1664 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.157$
$S=1.23$
2402 reflections
224 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& R_{\text {int }}=0.064 \\
& \theta_{\max }=66.0^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-11 \rightarrow 9 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 150 \mathrm{~min} \\
& \quad \text { intensity decay: }<2 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=\left\{\exp \left[3(\sin \theta / \lambda)^{2}\right]\right\} /\left[\sigma^{2}\left(F_{o}^{2}\right)\right. \\
& \left.\quad+(0.1052 P)^{2}\right] \text { where } P= \\
& \quad\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.051 \\
& \Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.62 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter }=0.00(5)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

O1-C9	1.377 (6)	C4-O4	1.259 (6)
O1-P2	1.600 (3)	C4-C10	1.482 (6)
P2-O21	1.451 (4)	C9-C10	1.413 (6)
P2-O22	1.561 (4)	C31-N32	1.316 (6)
P2-C3	1.754 (5)	C31-C311	1.492 (8)
O22-C23	1.461 (6)	N32-C33	1.451 (6)
C3-C31	1.428 (6)	C33-C34	1.483 (8)
C3-C4	1.432 (7)	C34-O35	1.405 (7)
C9-O1-P2	120.9 (3)	O4-C4-C3	122.7 (4)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 22$	113.7 (2)	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 10$	116.2 (4)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 1$	107.7 (2)	C3-C4-C10	121.0 (4)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 1$	104.9 (2)	C9-C10-C4	121.3 (4)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{C} 3$	119.3 (2)	N32-C31-C3	119.6 (5)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{C} 3$	105.3 (2)	N32-C31-C311	117.5 (5)
$\mathrm{O} 1-\mathrm{P} 2-\mathrm{C} 3$	104.6 (2)	C3-C31-C311	122.9 (4)
C23-O22-P2	119.6 (4)	C31-N32-C33	128.1 (5)
C31-C3-C4	122.0 (4)	N32-C33-C34	110.4 (5)
C31-C3-P2	120.4 (4)	O35-C34-C33	113.5 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{P} 2$	117.6 (3)		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N32-H32 \cdots O4	$0.97(6)$	$1.76(6)$	$2.601(6)$	$143(5)$
N32-H32 \cdots O35	$0.97(6)$	$2.46(6)$	$2.797(6)$	$100(4)$
O35-H35 \cdots O21 ${ }^{\mathrm{i}}$	$0.68(6)$	$2.25(7)$	$2.790(6)$	$137(7)$
Symmetry code: (i) $\frac{3}{2}-x, 1-y, z-\frac{1}{2}$.				

Compound (II)

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{P}$
$M_{r}=311.26$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=11.071$ (1) A \AA
$b=16.190$ (2) \AA
$c=8.490$ (1) A
$V=1521.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.359 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5S diffractometer ω scans
Absorption correction: analytical (de Meulenar \& Tompa, 1965)
$T_{\text {min }}=0.505, T_{\text {max }}=0.650$
1669 measured reflections
1669 independent reflections 1450 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.097$
$S=1.02$
1669 reflections
230 parameters
H atoms treated by a mixture of independent and constrained refinement
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=22.5-28.3^{\circ}$
$\mu=1.80 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless $0.6 \times 0.3 \times 0.3 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=72.7^{\circ} \\
& h=0 \rightarrow 13 \\
& k=0 \rightarrow 20 \\
& l=0 \rightarrow 10
\end{aligned}
$$

3 standard reflections frequency: 150 min intensity decay: $<2 \%$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0636 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.021 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0055(6) \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter }=-0.01(4)
\end{aligned}
$$

Table 3
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (II).

O1-C9	1.393 (3)	C4-O4	1.253 (3)
O1-P2	1.594 (2)	C4-C10	1.492 (4)
$\mathrm{P} 2-\mathrm{O} 21$	1.462 (2)	C9-C10	1.380 (4)
P2-O22	1.570 (2)	C31-N32	1.320 (4)
P2-C3	1.750 (3)	C31-C311	1.499 (4)
O22-C23	1.472 (4)	N32-C33	1.463 (4)
C3-C31	1.418 (4)	C33-C34	1.502 (5)
C3-C4	1.436 (4)	C34-O35	1.404 (4)
C9-O1-P2	121.11 (17)	O4-C4-C3	122.9 (3)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 22$	114.48 (16)	O4-C4-C10	117.3 (2)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 1$	107.20 (12)	C3-C4-C10	119.8 (3)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 1$	104.79 (13)	C10-C9-O1	121.5 (3)
$\mathrm{O} 21-\mathrm{P} 2-\mathrm{C} 3$	119.37 (16)	C9-C10-C4	123.0 (2)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{C} 3$	104.52 (14)	N32-C31-C3	120.0 (3)
$\mathrm{O} 1-\mathrm{P} 2-\mathrm{C} 3$	105.23 (12)	N32-C31-C311	116.6 (3)
$\mathrm{C} 23-\mathrm{O} 22-\mathrm{P} 2$	118.4 (2)	C3-C31-C311	123.5 (3)
C31-C3-C4	121.2 (3)	C31-N32-C33	127.9 (3)
C31-C3-P2	120.9 (2)	N32-C33-C34	108.5 (3)
C4-C3-P2	117.8 (2)	O35-C34-C33	112.8 (3)

For both compounds, all methyl H atoms were constrained to their parent atoms as a rigid body $(\mathrm{C}-\mathrm{H}=0.96 \AA)$. All other H atoms were located in difference maps and refined isotropically $[\mathrm{C}-\mathrm{H}=$ 0.82 (6) -1.16 (7) \AA for (I), and 0.93 (3)-1.09 (4) \AA for (II)].

Table 4
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N32-H32 \cdots O4	$1.05(5)$	$1.71(5)$	$2.575(3)$	$136(4)$
N32-H32 \cdots O35	$1.05(5)$	$2.39(5)$	$2.801(4)$	$102(4)$
O35-H35 \cdots O21				

Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (1989b); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: PARST97 (Nardelli, 1996).

Financial support from the Medical University of Łódź [grant No. 502-13-516-(178) to EB] and the University of Łódź (grant No. 505/667 to MM) is gratefully acknowledged. The authors thank Mrs Agnieszka Rybarczyk-Pirek for skilful experimental assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1518). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-83.

Budzisz, E., Nawrot, E. \& Małecka, M. (2001) Arch. Pharm. Pharm. Med. Chem. (Saarbruken). In the press.
Budzisz, E. \& Pastuszko, S. (1999). Tetrahedron, 55, 4815-4824.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hudson, H. R. \& Pianka, M. (1996). Phosphorus Sulfur Silicon Related Elements, pp. 109-110.
Kalir, A. \& Kalir, H. H. (1996). Chem. Organophosphorus Compd, 4, 767-780.
Kukhar, V. P. \& Hudson, H. R. (1999). Aminophosphonic and Amonophosphinic Acids. Chemistry and Biological Activity, ch. 1. London: John Wiley and Sons Ltd.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Meulenar, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1989a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1989b). TEXSAN. Version 5.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Preussman, R., Schneider, H. \& Epple, F. (1969). Arzneim. Forsch. 19, 1059.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

